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The constrained motion requires the determination of constraint force acting on 

unconstrained systems for satisfying given constraints. Most of the methods to decide the force 

depend on numerical approaches such that the Lagrange multiplier method, and the other 

methods need vector analysis or complicated intermediate process. In 1992, Udwadia and 

Kalaba presented the generalized inverse method to describe the constrained motion as well as 

to calculate the constraint force. The generalized inverse method has the advantages which do 

not require any linearization process for the control of nonlinear systems and can explicitly 

describe the motion of holonomically and/or  nonholonomically constrained systems. In this 

paper, an explicit equation to describe the constrained motion is derived by minimizing the 

performance index, which is a function of constraint tbrce vector, with respect to the constraint 

force. At this time, it is shown that the positive-definite weighting matrix in the performance 

index must be the inverse of mass matrix on the basis of the Gauss's principle and the derived 

differential equation coincides with the generalized inverse method. The effectiveness of this 

method is illustrated by means of two numerical applications. 
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I. I n t r o d u c t i o n  

The motion of  particles is sometimes restricted 

by desired trajectories. At this time, the constraint 

force acts on the particles for sustaining the 

motion along the trajectories. Thus, it is necessary 

to determine the constraint force to satisfy the 

given constraints tbr the description of a con- 
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strained motion. There have been many attempts 

to describe the constrained motion, and most of 

the methods to describe the constrained motion 

depend on numerical approaches like the ka- 

grange multiplier method (Gear, et al., 1985, 

Ascher and Petzold, 1993), or require complicat- 

ed intermediate processs like vector analysis or 

elimination of configuration space as many as 

the number of constraints (Hemami and Weimer, 

1981, Kane, 1983). In 1992, Udwadia and Kalaba 

(Udwadia and Kalaba, 1992) presented the gen- 

eralized inverse method to determine the con- 

strained motion as well as the constraint force. 

The generalized inverse method has the advan- 

tages which do not require any linearization pro- 
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cess for the control of nonlinear systems and can 

explicitly describe the motion of holonomically 

and /o r  nonholonomically constrained systems. 

The validity of the generalized inverse method 

has been examined by comparing with other 

approaches and applying to constrained mech- 

anical and structural systems. For its verification, 

an explicit equation to describe the constrained 

motion is derived by minimizing a performance 

index with respect to the constraint force. It is 

proved that the unknown positive-definite weigh- 

ting matrix in the performance index must be 

the inverse of mass matrix by comparing with 

Gauss's principle (Gauss, 1829) and the con- 

straint force is defined as the minimum force of  all 

forces to satisfy the given constraints. The derived 

differential equation of constrained systems coin- 

cides with the generalized inverse method. The 

effectiveness of this method is illustrated by means 

of two numerical applications. 

2. Constraint force 

The matrix equation of  motion of a system 

modeled by an n-degree-of-freedom lumped 

mass-spr ing-dashpot  system to include the effect 

of control force can be written as 

M ~ ( t )  + C ~ ( t )  + K x ( t )  = D u ( t )  + E l ( t )  (1) 

where M, C, and K are, respectively, the n ×  n 

mass, damping, and stiffness matrices, x (t) is the 

n-dimensional  displacement vector, f ( / )  is an 

r -vec tor  representing the applied load or exter- 

nal excitation, and u ( / )  is the m-dimensional  

control force vector. The n ×  m matrix D and 

n × r matrix E are location matrices which define 

locations of the control force and the excitation, 
respectively. 

The state-space vector representation of Eq. 
(1) can be written by 

z ( t )  = A z ( t )  + B u ( t )  + W f ( t )  (2) 

where z(t)=~x(t)  2 ( t ) ]  r is the 2n-dimen-  
sional state vector, 

B =  [M_,DI2.×. ,  and W _  I 0 --  [ M - ' E I 2 . × r  

Assuming that a system is unconstrained, qua- 

dratic optimal control can be found by determin- 

ing an optimal control vector u ( t )  so as to 
minimize the performance index 

J = f0 ~ (xrQx + uTRu) dt, (3) 

where Q is a positive-semidefinite Hermitian or 

real symmetric matrix and R is a positive-definite 

Hermitian or real symmetric matrix. But this con- 

trol algorithm can not apply to the constrained 

systems because u (t) is the unconstrained control 

vector. The control algorithm of constrained sys- 

tems can be derived as follows. 

To describe the motion of constrained systems, 

we assume that the n-degree-of-freedom system 

is constrained by the m consistent constraints 

~b,(x, x, t ) = 0 ,  i =  1, 2, . - - ,  m (4) 

of which m <  n. The state variables must satisfy 

the constraint sets due to the constraint force 

provided by Nature at all times. The general 

equation of  motion at time t of  constrained 

systems can be expressed as 

M ~ = F ( x ,  ~:, t) + v ( x ,  ±, t ) ,  (5) 

where F ( x ,  ±, t )=-Cx(t)-Kx(t)+Ef(t) ,  
and v (x ,  :~, t) is the constraint force vector. 

The first term of  the performance index (3) is 

excluded because the state variables are pres- 

cribed and governed by the values to satisfy the 

given constraints. And, the constraint force vector 

v ( t )  for the constrained motion replaces the 

control force vector u ( t )  for the optimal control 

of unconstrained systems. Consequently, the con- 

straint force vector v ( / )  in the performance index 

(3) can be derived by minimizing the perform- 
ance index 

J =  f0 ~vrRv  dt, v:~0 (6) 

where R is also a positive-definite Hermitian or 
real symmetric matrix. 

Under the assumption that the constraint equa- 

tions are sufficiently smooth functions to be 

A =  I 0 I ] differentiated with respect to time t, the proper 
- M - ~ K  - M  1C 2n×2n' differentiation of Eq. (4) with respect to time t 
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leads to the linear set of equations 

S(x , /~ ,  t )5~=b(x ,  x, t ) ,  (7) 

where S is an m ×  n matrix, and b is an m x l  

vector. Substituting 2 = M  - l ( F + v )  from Eq. (5) 

into Eq. (7), we obtain the equation 

S [ M - ' F + M - ~ v ]  = b  (8a) 

or (SM-IR  -v=) R V 2 v = b -  Sa, (8b) 

where a is the acceleration vector of the uncon- 

strained system. Letting SM-1R-V2=H in Eq. 

(8b) and solving it, it follows that 

RV2v=H+ ( b - S a )  + [ I - H + H ] y ,  (9) 

where y is an arbitrary vector and ' + '  indicates 

the generalized inverse. 

The minimization of the performance index 

(6) with respect to v indicates RVZv=0, and the 

arbitrary vector y of  Eq. (9) can be expressed as 

y =  [ I - H + H ]  H + ( b - S a )  
+ [ i _  [ I _ H + H ] + [ I _ H + H ] ~  z (10) 

where z is another arbitrary vector. Using Eq. 

(10) into Eq. (9) with [ I - H + H ] + = I - H + H ,  

H + H H  + = H  +, we can obtain the arbitrary vector 

y a s  

y = H + H z .  (11) 

The substitution of Eq. (I 1) into Eq. (9) yields 

the constraint force vector 

v=R-vZ(SM-~R-VZ) + ( b - S a ) .  (12) 

Using Eq. (12) into Eq. (5), we can obtain an 

explicit equation of motion for constrained sys- 

tems. However, the constraint force depends on 

the weighting matrix R as shown in Eq. (12). It 

is necessary to decide the weighting matrix R so 

that the constraint force does not violate the 
constraint conditions. 

From the Gauss's principle the acceleration, 

R(t )  which minimize the Gaussian function, G, 

defined by 

G =  L ~ - - a j r M [ ~ - - a ] ,  (13) 

In actual acceleration provided by nature. Here, 

the n ×  n mass matrix M is symmetric and posi- 
tive definite. Using Eq. (5) into Eq. (13), we can 

write the Gaussian function in terms of the con- 
straint force vector as lbllows : 

G=vTM-*v.  (14) 

Through the comparison of Eqs. (6) and (14), 

it is apparent that the unknown weighting matrix 

R takes the inverse of mass matrix M -I. The final 

equation of the constraint force can be expressed 
a s  

v = M  l/2 (SM -v2) + ( b - S a ) .  (15) 

The constrained motion is sustained by the 

action of the constraint force determined by Eq. 

(15). It can be observed that the constraint force 

is the minimum value of all forces to satisfy the 

constraints on the basis of  the Gauss's principle. 

In additudn, it is indicated that the Gauss's prin- 

ciple provides another meaning that the con- 

straint force such that the Gaussian function given 

by Eq. (13) is minimized over all the constraint 

forces, and it satisfies the constraints. The con- 

straint force presented by the generalized inverse 

method is determined by the same form as Eq. 

(15) in spite of another interpretation of  the 

Gauss's principle. The validity of this method is 

established from the following two applications. 

3. Application 1 

To show the effectiveness of this method, we 

considered the coupled Duffing's oscillator shown 

in Fig. 1, which is subjected to a constraint 

x~(t) - x z ( t )  = g e  -~t s in(c0t) .  (16) 

The two nonlinear springs $1 and s2 exert forces 
representad by 

f i=k ,u i+kn tu~ ,  i = 1 ,  2 (17) 

where ui denotes the extension of the ith spring 
and k, n.t indicates that the spring force has a cubic 

nonlinearity. The equation of motion of the un- 

constrained system given by Fig. l may be written 

c 2 I ' x2  c~ F - ~ x ~  

S 2 S 1 

Fig. I Coupled Duffing's oscillator 
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a s  

o r  

F=M$~ = - [Kx +CR + g " q  
aCt )=[a~( t )  az(t)]  v 

= - M - l [ K x + C R + g " q  

(18a) 

(18b) 

where M = d i a g [ m i ,  mz], 

K =  [_k~  - k~  
kl + k2]' 

C = [  cl - c l  ] and 
--C1 Ci+C2 ' 

G" [ k~'(Xl-Xa)a a]. 
=L ~l 3 nl k~ x~-k~ (xx-x~) 

Differentiating Eq. (16) twice, we get the con- 

straint equation 

.~i~-)i~=-fie -~t [0) 2 sin wt +2wa cos wt-c3 sin wt] (19) 

=b(t). 

Hence, the matrix S = [ I  - l ]  and b( t )  is a 

scahzr. The constraint tbrce from Eq. (12) can be 

written as 

vt#) =Iv, v# 
=R_i,z([i _,][01 0 -' - (20) 

The parameter values describing the system 

are: m l = 2 ,  m 2 : l ,  kl=10,  k2=12, k~*=l ,  k~ ' t= 
2, c t=0 . l ,  c2=0.15, ~ = l ,  w=2zr, a = l .  The 

initial conditions are: 

.,9( 1 ( 0 )  = x 2 ( O )  = 1 ,  

~ ( 0 )  =t~o+.i&(O), (21) 

.~(0) =2  

As shown in Eq. (20), the constraint force 

and the constrained response depend on the 

weighting matrix. Figure 2 shows the numerical 

results according to three different weighting 

matrices; R I = M  -~, R 2 = d i a g [ l  1], R3=diag  

[0.5 0.3]. As shown in these figures, both the 

minimum response and constraint force occur at 

R I = M - L  Figure 2(d) shows the errors in the 

satisfaction of the constraint (16), and the dis- 

placement responses satisfy the constraint equa- 
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Displacement responses and constraint forces according to weighting matrix; 
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(a) displacement 

responses, (b) constraint force in the xl-direction, (c) constraint force in the xz-direction. (d) error in 

the satisfaction of the constraint eq. (16) 
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tion (16) regardless of the selected weighting 

matrix. This is due to many constraint forces to 

satisfy the constraint as indicated by the arbitrary 

vector y in Eq. (9). Based on the Gauss's princi- 

ple and the numerical results, the weighting 

matrix should be the inverse of mass matrix. 

Therefore, the constraint force can be physically 

defined as the minimum force of all forces to 

satisfy given constraints. 

4. A p p l i c a t i o n  2 

A single story structure installing a double 

pendulum indicated by Fig. 3 has mass rap, 

stiffness k,,, damping coefficient cp. The double 

pendulum is connected by a hinge at the top of 

floor, and a roller with stiffness k and damping 

/ / / / / / / / / / / / / / / .  

(a) 
$ 

" 7 ,  g// / / / / / / / / / , I  

I '21 kp I 

$i 

7 / / / / / / / / / / / / / / /A  
.4Up 

(b) 

Fig. 3 

)Xl 

)X2 

: Xp 

, X 1 

' X2 

A double pendulum at the top floor of struc- 
ture; (a) A double pendulum, (b) con- 
strained double pendulum 

coefficient c at the bottom of floor. The pendulum 

has two masses ml and mz, and two weightless 

lengths [1 and /2. This system can be described 

by the Lagrangian coordinates [xp 01 ~JT or 

Cartesian coordinates [xp xl Yl x2 Y21T. The 

unconstrained equations of motion of the given 

system by the Cartesian coordinate system are 

written as 

mp2"p + (kp + k) xp + ( cp + c) 2 ~ -  k x z -  c22 (22a) 

= - -  mtoUg 
mta21 = -- mt/2 g (22b) 

mlYl = - -  mlg  (22c) 

ma3d2- kxp + kXa-  C2p + cYc2= -ma~2g (22d) 

mzYz= -- mag (22e) 

where g is the acceleration of gravity and ~g is 

the ground acceleration. 

The system has three constraints, two of which 

are expressed as 

(xl--xp) Z+y~=/12 (23a) 
and (x2--xl)2+ (yz--yl 2) = l  z (23b) 

which indicate the relation of the Lagrangian and 

Cartesian coordinates. And the other constraint, 

which the height of floor is always equal to the 

one of the pendulum, is given by 

y z = h  (23c) 

where h is the floor height. 

Differentiating twice the constraint equation 

sets (23) with respect to time t, we obtain the 

relation 

Xp--Xl Xl--Xp Yl 0 0 ] 2"1 

0 xl--xz Y~--Y2 x2--xt Y2-YlJ Yl 

0 0 0 0 1 ~t (24) 
Y2 

= - ( ~ 2 - x ~ ) 2 - ( P - , - y l )  ~ 

0 

Using Eqs. (22) and (24) in Eqs. (5) and (15), 

we can explicitly determine the constrained equa- 

tion of motion. 
The above systems are described by the values 

h=3.0, rap=3.0, m~=0.3, m2=0.03, l~=2.4, 
(25) 

I2=0.9, kp=400, k=15, c>=c=1.386 

Copyright (C) 2003 NuriMedia Co., Ltd. 



Dynamic Optimization Algorithm of Constrained Motion 1077 

0 3  

0 2  

o 

o 
z °0.2 

- 0 . 3  
C. 

-0 .4 

O. t  

$ tO t 5  20  25 30 35  40 
T I M E ( S E C , )  

(a) 

-0.2 

i -04 

-I 2 

Fig. 4 

£ 10 15 20 25 30  35 40 

TIM E ($ [ C ) 

(b) 

4 

5 10  15 20 25 30  35 40  

"/IM E (S E C ) 

(c) 

Dynamic responses with or without the pen- 
dulum : (a) North-south components of EI- 
Centro earthquake in 1940, (b) displacement 
responses with or without the pendulum, 
(c) constraint forces acting in the xp direc- 
tion 

Also, we choose the initial conditions 

xl (0)=0.5953, yl(O)=2.325, yz(O)=3.0 
xp(O) =xz (0) =2p(O) =.fa (0) =3)1(0) (26) 

=: t2(o)  = ~2(o) = o  

Assume that the structure was excited by the 

north-south components of E1 Centro earthquake 

in 1940 shown by Fig. 4(a). In Fig. 4(b),  we 

compared the structural responses with and with- 

out the double pendulum. As shown in the figure, 

the installation of the pendulum changes the 

dynamic characteristics and yields the reduced 

responses by the acting constraint force. Figure 4 

(c) shows the control force acting in the x~ 

direction calculated by Eq. (15). The force can be 

interpreted as the minimum force of all forces to 

satisfy the given constraints. This application also 

exhibits that the constrained response and con- 

straint force can be simply and explicitly decided. 

From the applications, it is convinced that the 

proposed method can be simply applied to the 

control field of constrained structural or mech- 

anical systems. 

5. Conclusions 

The exact description of constrained motion 

depends on the explicit determination of con- 

straint force provided by Nature in order to satis- 

fy constraints, which restrict the motion of 

systems. There have been many methods to 

describe the constrained motion, and most of 

them depend on numerical approaches such that 

the Lagrange multiplier method. Thus, this paper 

derived an explicit equation to describe the con- 

strained motion as well as to calculate the con- 

straint force by minimizing a performance index, 

which is a function of constraint force vector, 

with respect to the constraint force. The com- 

parison with Gauss's principle yielded that the 

weighting matrix in the performance index must 

be the inverse of mass matrix. The derived 

differential equation coincided with the gen- 

eralized inverse method and Gauss's principle 

can be interpreted as another meaning that Nature 

chooses the constraint force, which is the mini- 

mum force of all forces to satisfy constraints. Two 

applications illustrated that the generalized 

inverse method can be applied to various control 

fields of mechanical and structural systems. 
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